If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-46x+8=0
a = 6; b = -46; c = +8;
Δ = b2-4ac
Δ = -462-4·6·8
Δ = 1924
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1924}=\sqrt{4*481}=\sqrt{4}*\sqrt{481}=2\sqrt{481}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-46)-2\sqrt{481}}{2*6}=\frac{46-2\sqrt{481}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-46)+2\sqrt{481}}{2*6}=\frac{46+2\sqrt{481}}{12} $
| 9+2m=9 | | 4r-3r-1=6 | | 5+5x+7+x=36 | | X+3(x+17)=(-5) | | 4x-9=48-3x | | 8=x9 | | 29/x=124.7/150.5 | | 3x+4=+5x+3 | | -5+7m=30 | | d/20=10 | | 5(4y+6)=18y+16 | | 18b−10b=8 | | x/90=81 | | 46=35+x | | 0.25x^2-6x+20=0 | | 217/x=651/93 | | 5+7m=30 | | 25u=125 | | x+(x+1)/3x+17=1/2 | | 5+2y=29 | | 4/2.5=8/x | | 10x+8x-3=15 | | 10=2+v/2 | | 125=25u | | (68-2x)=(82-3x) | | .4x+5.49=9.49 | | 7l=56 | | 12q-7q-1=14 | | x÷35=15 | | 7c+9=5c+15 | | -12-x=18 | | l/7=56 |